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Exact statistical model accounting for surface fluctuations in two-dimensional droplets
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In a soluble model we investigate the role of geometrical shape fluctuations for the equilibrium prop-
erties of a polydisperse ensemble of two-dimensional droplets. Interactions within a droplet include

bending rigidity and spontaneous curvature.

Interactions between droplets are omitted. Taking

rigorous account of all possible shapes of the individual droplets, the droplet-size distribution is found
for arbitrary temperature. The fluctuation-dominated regime extends to temperatures far lower than ex-

pected from a mean-field calculation.

PACS number(s): 68.35.Rh, 05.20.—y, 82.70.—y

Recent years have seen intensive research efforts devot-
ed to the study of the equilibrium properties of amphi-
philic systems, emulsions, or other realizations of inter-
faces between two phases. These systems have been
shown to exhibit a rich phase behavior [1]. Great interest
is concentrated on the role of geometrical fluctuations of
the interface around the most probable configuration, i.e.,
the configuration which minimizes the Hamiltonian.
This is motivated by the fact that, for interfaces and
embedding spaces of low dimension, fluctuations should
be far from negligible. For amphilic systems this ques-
tion is particularly acute since many realistic systems ex-
hibit small surface bending rigidities of the order of
thermal excitations. In that case the thermodynamic
properties should be strongly affected by fluctuations of
the shape of the surface.

From the theoretical side, the role of shape variation
has been mostly studied in planar configurations of un-
bounded sheets. One of the most interesting conclusions
was the realization [2,3] that the microscopic parameters
entering the Hamiltonian (e.g., bending rigidity) are
strongly renormalized when considered on a certain
length scale, this renormalization being caused by surface
fluctuations taking place on smaller scales. Many other
interesting entropic phenomena have since been
identified.

On the other hand, experimental studies [4,5] are obvi-
ously restricted to finite, though possibly large, surfaces.
In many cases, extra conditions like spherical shape or
given total surface area will act as strong geometrical
constraints on the interface: A typical suspension will
comprise a large number of aggregates of spherical topol-
ogy, and these aggregates come with a wide variety of
shapes and sizes [6].

Such finite aggregates have been considered in detailed
but time consuming simulations of the fluctuation dy-
namics of a single isolated vesicle in both two [7] and
three [8] dimensions, but extension of these results to the
polydisperse case seems impractical at the moment. The
implications of small distortions of spherical vesicles in a
polydisperse emulsion have been considered [9] analyti-
cally some time ago. Progress on the problem of incor-
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porating large shape distortions has been lacking, howev-
er. The obvious reason lies in the difficulty of accounting
for the constraint of spherical topology, as this constraint
introduces effective long-range interactions between all
molecules in the vesicle.

We therefore formulate a highly idealized model for a
suspension, which rigorously accounts for closedness,
polydispersity in aggregate size, as well as for arbitrary
shapes a particular aggregate might find itself in. In what
follows we will refer to an aggregate as a droplet, ir-
respective of its shape or topology.

The problem of calculating the total partition function
separates into two parts: First, for any particular droplet
size, the summation over all geometrical configurations
has to be carried out in compliance with the geometrical
constraints. Second, the resulting free energy for a par-
ticular droplet size subsequently enters as the weight of a
suitable defined grand canonical sum over all droplet
numbers and sizes.

For reasons to be given below, we consider droplets
containing five or more particles only. Let us denote with
ny the number of droplets of size N, and neglect the in-
teractions between individual droplets. The calculation is
most conveniently carried out in the grand canonical
average defined as the sum over all sets of nonnegative
numbers ny compatible with a given total number of
droplets M= yny. Neglecting interactions between
the various droplets, this average is given by
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Here the last line serves as the definition of the function
D, u denotes the chemical potential for a single particle,
and Fy stands for the free energy of a droplet containing
N particles. The counting factor accounts for the mixing
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entropies of the various droplet types [10]. The form of
Eq. (1) guarantees that all averages over the chosen en-
semble will be proportional to the total number of drop-
lets M. Therefore, D is seen to be the proper normaliza-
tion factor for the probabilities Py to find a droplet con-
sisting of NV particles,
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This droplet-size distribution still depends on the chemi-
cal potential i, which may be adjusted to obtain a desired

average number of particles per droplet, N,
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In order to specify Fy, we treat an N-particle droplet
as a closed chain of sticks, connected at the end points.
In what follows, we assume the chain to be restricted to
the plane, although the generalization to an embedding
space of higher dimension is straightforward [11]. The
corresponding N-chain Hamiltonian consists of the bend-
ing energy, characterized by a bending rigidity « and
spontaneous curvature a, as both concepts are crucial for
the characteristic properties of emulsion interfaces [1].
We choose a widely used form that is equivalent to the
classical planar Heisenberg chain in the absence of exter-
nal fields,

N
Hy(A,...,Ay)=k > 1—cos(A;—a), 4)

i=1

where A; €[ —, ] is the angular increment of the inter-
face at the ith vertex. From this N-chain Hamiltonian we
define a (complex) partition function Z,(a) as a sum over
all configurations consistent with the requirement that
the chain be closed. However, we will not exclude the
possibility that the droplet intersects itself (ghost inter-
face).
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This partition function contains the contributions from
all configurations with arbitrary integer values for the
winding number W=(oy—0,)/2r (WELZ). This
motivates the introduction of the last exponential in the
integrand: It gives a characteristic phase factor e ~'%?"™%
to each topological subclass of winding number W.
Therefore, the contribution from a particular winding
number W, may be projected out by an integral over the
topological angle «a,
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These free energies may then be used in Eq. (2) to com-
pute the size distribution of droplets with the selected
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winding number, or any other desired thermodynamic
average. At first sight the appearance of a complex in-
tegrand in Eq. (6) seems unphysical until one realizes that
the periodicity in the topological angle a implies the rela-
tion Zy(l1—a)=Zy(a)*. This guarantees positive real
values for the total integral and meaningful results for the
free energies Fy.

As it stands, the (N —2)-fold integration in Eq. (5a) is
difficult to evaluate due to the 8-function constraints that
introduce a strong coupling between all particles in the
droplet. However, using a Laplace transform method
analogous to the solution of the Berlin-Kac model for fer-
romagnetic spin systems [12], the constraints may be
brought into a factorized form,
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where p and @ are the polar coordinates in the two-
dimensional (2D) integration space. Using transfer-
matrix techniques [13], a lengthy algebraic manipulation
transforms the partition function into the polar integral
over a trace. As this trace is independent of the polar an-
gle @, the latter integration may be done at once, and the
result may be compactly written as
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where the transfer operator T(a,p) is defined as
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The three exponentials in the integrand have the fol-
lowing significance: The first accounts for the vertex in-
teraction as given by the Hamiltonian Eq. (4). The
second accounts for the geometrical constraint that the
aggregates be closed. The third exponential provides the
topological decomposition into subclasses with definite
winding number.

For numerical studies of Eqgs. (8a) it is convenient to
expand the transfer operator on the basis of harmonic
functions within period 27. Omitting a nonessential
phase factor which does not affect the final trace in Eq.
(8a), the matrix elements may be expressed in terms of
Bessel functions J,,(p) and the Fourier coefficients E;(a)
of the vertex interaction,

T, (a,p)=E(a)],, _(p), (9a)
Efa)=[" j_:-_e~BK[1—cos(z~a)]e—i(l+a)z' (9b)
—m

From these expressions the traces over the transfer ma-
trices were computed recursively by brute force matrix
multiplication. Subsequent integration over the geome-
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trical parameter p and the topological angle a were im-
plemented with a standard Gaussian integration pro-
cedure. The asymptotic behavior of the Bessel functions
guarantees convergence of the geometrical integral for
droplet sizes exceeding five particles. This property
motivates the choice of five as the minimal droplet size
included in the grand canonical summation [cf. Eq. (1)].

Figure 1 shows predictions for the size distribution Py
of the droplets. For all calculations presented in this
Brief Report, the spontaneous curvature was chosen
a =0.5, and the winding number set to W,=1. The dis-
tribution has been normalized to unity and its first mo-
ment N has been set to 15 by adjusting the chemical po-
tential u. The importance of geometrical fluctuations
may be seen by comparing these exact results with a
mean-field approximation (MFA). It is formulated in
terms of the energy of the regular N-sided polygon with
bending angle 3, =27W,/N at all vertices. The corre-
sponding Boltzmann factor is multiplied with the avail-
able phase-space volume Vy,
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FIG. 1. Logarithm of the normalized droplet-size probabili-
ties Py at three temperatures (B«=0.1, 1.0, and 10.0, respective-
ly). The curvature was chosen @ =0.5, and the chemical poten-
tial adjusted to give an average droplet size of N=15. Solid
curves are predictions from the exact calculation, dashed curves
result from the MFA.
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This mean-field description ensures good agreement
with the exact calculation at very high temperatures, pro-
vided the Hamiltonian is bounded, as in Eq. (4). At such
temperatures the system behaves purely entropically, i.e.,
dominated by the available phase-space volume. At in-
termediate temperatures the Boltzmann factor gains im-
portance and serious discrepancies between the exact and
the MFA calculations arise. At very low temperatures,
the exact result is dominated by small geometrical fluc-
tuations around the regular polygon. As this polygon ap-
pears explicitly in the mean-field prescription, the MFA
is accurate in this temperature regime also.

As expected, the effects from shape fluctuations mani-
fest themselves most prominently in the crossover regime
Bk=1, where the thermal excitations are of the order of
the bending energies in the droplets. From high tempera-
tures right into the crossover regime, the shape fluctua-
tions in the exact model are so dominant as to completely
overshadow the Hamiltonian contribution to the free en-
ergy. This may be seen from the close similarity of the
droplet-size distributions at Sxk=0.1 and 1. This point is
illustrated even more clearly by the spread AN in aggre-
gate size as a function of temperature,

(AN?=(N—N)*. (12)

The results are given in Fig. 2. The MFA is seen to re-
tain temperature dependence throughout the temperature
range considered. The exact calculation shows a marked
absence of any temperature effect for B« <1, indicating
that the size distribution is not affected by the details of
the Hamiltonian, but is fully determined by the available
phase space only. In itself, it is not surprising that these
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FIG. 2. Spread AN in droplet-size distribution as defined by
Eq. (12). Curves are labeled as in Fig. 1. In mean-field approxi-
mation the spread retains temperature dependence, whereas the
exact calculation shows the spread to be insensitive to tempera-
ture (and therefore the Hamiltonian) as soon as Bk < 1.
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entropic contributions dominate in the high-temperature
regime. It is remarkable, however, that this dominance
extends down to temperatures where Sx=1.

The exactly soluble model described above may be gen-
eralized in a number of ways: For example, it may be for-
mulated for embedding spaces of dimension exceeding 2,
as well as with more general vertex interactions. For
such a general vertex potential kV(A; —a), the Fourier
coefficients E; should read

El(a)___f_”v;i_:-e—ﬁxwz—a)e—i(l+a)z . (13)

An interesting application of this generalization arises
with a vertex potential forcing the curvature to have
definite signature, say positive. In combination with the
closedness of the aggregates and unit winding number,
this choice yields a self-avoiding statistical model, results
for which will be presented elsewhere.

The lack of self-avoidance [14] in the model as implied
by Eq. (5a) clearly points out severely unrealistic aspects
of the current calculation. A further undesirable feature
is the obvious fact that the 1D structures considered here
are rather poor analogs of realistic droplets or vesicles.
Obviously lacking also are contributions from pressure
differentials between the two sides of the micelle surface
that are expected to play an important role in droplet sta-
bilization [7]. Finally, the size distribution function
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should in principle be affected by the presence of even
very weak interactions between individual droplets as
they arise from electromagnetic [15] or geometrical
[16,17] fluctuations. However, whereas such interactions
will strongly affect the overall thermodynamic behavior
of the ensemble, the actual effect on the droplet-size dis-
tribution might not be severe. For example, inclusion of
the interdroplet interactions via a mean-field formalism
will result in an interaction depending on the total
amount of amphiphile, but not on the way this amount is
distributed over the various droplet sizes. This leaves the
droplet-size distribution unchanged unless the interac-
tions between the droplets are sufficiently strong to in-
duce, say, a phase separation into a dilute and a concen-
trated phase.

None of the physical ingredients mentioned above have
been included in the current calculation. In spite of these
severe shortcomings, the attraction of the model present-
ed above lies in the rigorous incorporation of shape fluc-
tuations of the interface, while retaining the strong
geometrical and topological constraints of closedness and
specified winding number. After all, these constraints in-
volve all particles in a given aggregate simultaneously,
and thereby introduce effective long-range interactions
between them. Finally, being exactly soluble, the current
model will be used to investigate the consequences of a
number of approximate treatments as found in the litera-
ture.
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